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SUMMARY

The transient one-dimensional Burgers equation is solved by a mixed formulation of the Green element method
(GEM) which is based essentially on the singular integral theory of the boundary element method (BEM). The
GEM employs the fundamental solution of the term with the highest derivative to construct a system of discrete
first-order non-linear equations in terms of the primary variable, the velocity, and its spatial derivative which are
solved by a two-level generalized and a modified time discretization scheme and by the Newton–Raphson
algorithm. We found that the two-level scheme with a weight of 0�67 and the modified fully implicit scheme with
a weight of 1�5 offered some marginal gains in accuracy. Three numerical examples which cover a wide range of
flow regimes are used to demonstrate the capabilities of the present formulation. Improvement of the present
formulation over an earlier BE formulation which uses a linearized operator of the differential equation is
demonstrated.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Burgers equation, which represents a combination of viscous and inertial components, is a quasi-
linear partial differential equation capable of exhibiting some very unique phenomena. When the
inertial term is dominant, its solution resembles that of the kinetic wave equation which displays a
propagating wave front and boundary layers. On the other hand, viscous dominance causes
dissipation and smearing of the solution wave front.

The primary mathematical difficulty involved in the solution of the Burgers equation arises from
the sudden change in the solution profile over small regions. Research interests over the years have
dwelt on accurately representing the scalar values in these areas of rapid change. The greater number
of analytical solutions, which are summarized by Benton and Platzman,1 has been obtained for
infinite domains by the Cole–Hopf transformation,2,3 which simplifies the non-linear Burgers
equation to a linear diffusion equation.

The large array of numerical solutions of the Burgers equation has been based on various versions
of the finite difference and finite element methods (FDM and FEM). Fletcher4 carried out a thorough
treatment of various Galerkin FE formulations and applied them to the propagating shock problem.
His results and conclusions suggest no clear-cut advantage of his finite element formulation over
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other traditional methods such as the finite difference technique. Varoglu and Finn5 adopted a finite
element approach which used isoparametric space–time elements and incorporated the method of
characteristics. their method, which is actually an improvement on earlier work by Bonnerot and
Jamet,6 yielded good results for a wide range of flow parameters. Epperson7 applied a linear
semigroup linearization to solve non-linear parabolic equations. In a subsequent work8 he used a
modified version of the same technique to decouple the non-linear convective term of a parabolic
partial differential equation to obtain a very accurate prediction of the scalar profile. A more recent
work based on the finite analytic method has been that of Onyejekwe,9 who used an adaptive grid
algorithm to resolve the steep profiles of the dependent variable. Applying the boundary element
method (BEM), Kakuda and Tosaka10 used the free space Green function for the linearized
differential operator and solved the integral equations in each subdomain.

Here we improve on the BE solution of Kakuda and Tosaka10 by an approach, referred to as the
Green element method (GEM), which derives its fundamental solution from the term with the highest
derivative so that the non-linear inertial or convective term is treated more accurately. The
improvement in the accuracy of the numerical solution is demonstrated with the first example. The
successful application of the GEM to linear and non-linear differential operators,11 which hitherto
had proved difficult with the boundary element theory, provides the motivation for the current work.
Three numerical flow problems governed by the Burgers equation are used to demonstrate the
capabilities of the current formulation. The numerical results show that the GEM is capable of
solving the Burgers equation for flow regimes which cover small and large values of the viscosity
parameter.

2. GREEN ELEMENT FORMULATION

The partial differential equation that governs the non-linear fluid flow phenomenon of shocks or wave
propagation, widely known as the Burgers equation, is given by
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in which n � 1=Re is the reciprocal of the flow Reynolds number defined by appropriate length and
velocity scales of the flow,x andt are the spatial and temporal independent variables respectively and
L � x0 ÿ xL is the length of the flow domain. In addition to (1), boundary and initial data have to be
prescribed for the problem to be well posed. The boundary conditions are either of a Dirichlet type
which specifies the velocity,

u�x0; t� � g0�t�; u�xL; t� � gL�t�; �2a�

or of a Neumann type which specifies the spatial derivative of the velocity,

@u�0; t�

@x
� f0�t�;
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@x
� fL�t�; �2b�

or an appropriate combination of the two. The initial data specify the velocity at the initial timet0:

u�x; t0� � u0; x0 4 x4 xL: �2c�

The Green element formulation is based on the Fredholm singular integral theory which employs the
free space Green function of the term with the highest derivative or the 1D Laplace differential
operator. By adopting this approach, we avoid linearizing the differential equation to enable us obtain
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the free space Green function for the problem. The free space Green function is obtained from the
solution to

d2G

dx2
� d�x ÿ xi� on ÿ14 x41 �3�

in an infinite space in thex-dimension, whered�x ÿ xi� is the Dirac delta function andxi is commonly
referred to as the source point. The general form of the solution to (3) is given by

G�x; xi� �
jx ÿ xij � k

2
; �4a�

wherek is an arbitrary constant. (Althoughk is an arbitrary constant, its value has to be judiciously
chosen, otherwise some of the diagonal elements could have zero value. Certainly the value ofk
cannot be set to zero in our formulation, because this leads to the diagonal coefficients of the flux in
the global matrix being zero, thereby producing a singular matrix.) We elect to setk to unity. With
this value ofk,

G�x; xi� �
jx ÿ xij � 1

2
: �4b�

G�x; xi� is referred to as the free space Green function, the fundamental solution or the unit response
function. It is the response of a system governed by (3) due to an instantaneous unit input. In one
spatial dimension, Green’s second identity is restated for two functionsG andu which should be at
least twice differentiable in space:
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Introducing (1) and (3) into (5) yields
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which is simplified further to
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wherel takes the value of unity ifxi is within the intervalx0 < x < xL andl � 1
2 if xi is at the end

points of the flow length.
The integral representation of (1), given by (6b), is discretized by piecewise linear segments or

elements over which a distribution of the primary variableu and its spatial derivatives@u=@x is
prescribed. We have employed a linear distribution of those quantities over each element. By
following this approach, the numerical solution comprises two quantities at each node, i.e.u and
@u=@x, which is why it is a mixed formulation. The advantage of such a mixed formulation is that the
primary variableu and its spatial derivatives are approximated to the same order of accuracy. In other
words,u and@u=@x haveC� continuity. This approach is in contrast with those of other numerical
methods where the flux is treated as a secondary variable that is obtained from the primary variable
by numerical differentiation, thereby reducing by one order the accuracy of the spatial derivative of
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the primary variable. The flow domain is discretized intoN elements and in each elementu and@u=@x
are approximated by linear interpolation functions in space,
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in which the superscripte denotes a typical element as shown in Figure 1 and the interpolating
functions areOe

1�z� � 1 ÿ z andOe
2�z� � z, wherez � �x ÿ xe

1�=le
; 04z4 1, is a local co-ordinate

that has its origin at node 1 of theeth element andle is the length of the element. Within this typical
element the integral equation (6b) is
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Introducing (7) into (8) and making use of the fact thatdG�x; xi�=dx � �H�x ÿ xi� ÿ H�xi ÿ x��=2,
whereH is the Heaviside function, equation (8) becomes
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when the source node is at node 1 of the element and
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when the source node is at node 2 of the element. Equation (9a) and (9b) are combined and expressed
in matrix form as
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Figure 1. Definition sketch for linear 1D element
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in which the elemental matrices are
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Equation (10) is a system of non-linear first-order differential equations in time which can be solved
for u and @u=@x at the nodes by first employing an appropriate approximation of the temporal
derivatives and then a non-linear solution algorithm. We elect to use the two-level time discretization
scheme that approximates the temporal derivative att � tm�a � tm � aDt so that equation (10)
becomes
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in which a is a time-weighting factor, the subscriptsm � 1 andm denote the current and previous
time levels respectively andDt � tm�1 ÿ tm is the time step. We also elect to use a modified fully
implicit scheme that approximates the temporal derivative attm�1 as
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so that equation (10) becomes
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The Newton–Raphson (N–R) algorithm is used to simplify the system of non-linear equations. The
N–RE algorithm is introduced into both time discretization schemes of the GEM, equation (12) and
(14). In the usual way of implementing the algorithm, a solution�ue;k
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both equations and updated by
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wheref � @u=@x, the superscript T denotes vector transposition,k andk � 1 denote the previous and
current iteration values respectively and the increment given by the second term on the right-hand
side is obtained from the matrix equation
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In (16) the known vectorEi is the quantity on the left-hand side of either (12) or (14), with values ofu
andf evaluated at the current timetm�1 but at the previous iterationk, and the JacobianJ e;k
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For the generalized two-level scheme and
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For the modified fully implicit time discretization scheme. The final step is to assemble equation (16)
for all N elements so that two degrees of freedom are maintained at each node and to implement the
boundary and initial data given by (2). The resultant global equation is given by

Ak
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The global coefficient matrix is banded with a half-band width of two and with a row dimension that
is twice the number of elements. Equation (19) is solved at each time step for as many number of
times as necessary until convergence is achieved by
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where e is the convergence tolerance, a predetermined small quantity that reflects the level of
accuracy that can be accommodated.

3. NUMERICAL EXAMPLES

Three numerical examples are used to demonstrate the capabilities of the current numerical model.
The first two examples have analytic solutions which serve as bases for comparison with our
numerical results, while the GEM solution for the third example is compared with that of the finite
element method.

The first example is an initial sinusoidal wave which is allowed to propagate and diffuse within a
confined flow domain in thex-direction. The problem has the boundary conditions

u�0; t� � 0; u�1; t� � 0; u�x; 0� � sin�px�: �21�

The exact solution to this problem, in the form of an infinite series, has been provided by Cole.2
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The second example is an initial discontinuous wave form which is allowed to diffuse into a
continuous wave form while at the same time being propagated in time along thex-direction. The
initial and boundary conditions are given by

u�x; 0� �
1; x4 0;

0; x > 0;

�

u�ÿ1k; t� � 1; u�1; t� � 0:

�22�

The exact solution, obtained by the Cole–Hopf transform, is given by Lighthill12 as
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p
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The third example used in demonstrating the capabilities of the current numerical model, which
has also been employed by other investigators,5,10 has the initial and boundary conditions.

u�x; 0� �

1; x < 5;

6 ÿ x; 54 x < 6;

0; x > 6;

8

>
<

>
:

u�ÿ100; t� � 1; u�20; t� � 0:

�24�

The time and spatial discretizations and other simulation data for the three numerical examples are
summarized in Table I.

First numerical experiments were carried out to determine the optimum weighting factor of the two
time discretization schemes that were used in approximating the temporal derivative (see equations
(12) and (14)). The benchmark solutions of examples 1 and 2 and the range of values for the viscosity
term in example 3 provided the basis for evaluating the accuracy of these time discretization
schemes. In order to numerically determine the time scheme which most closely reproduces the exact
solution, five values of the time-weighting factor were examined:a� 0�5, 0�67, 1�0, 1�25 and 1�5. For
this study the performance of the schemes is assessed by both the mean absolute deviation and the L-

Table I. Data for GEM simulations

End point
co-ordinates Flow Time Number of Maximum

parameter step elements, Spatial number Figure=table
Example x0 xL n Dt N discritization of iterations number(s)

1 0 1 1 0�01 20 Uniform 4 Table II
0 1 101 0�01 40 Uniform 4 Table III,

Figure 2
0 1 102 0�01 100 Uniform 6 Table IV,

Figure 3
0 1 102 0�02 50 Non-uniform 6 Figure 6
0 1 103 0�02 100 Non-uniform 6 Figure 7
0 1 104 0�02 Non-uniform 6 Figure 8

2 1�5 2�5 0�025 100 Uniform 5 Figures 4, 9
0�7 1�3 102 0�01 100 Uniform 6 Figures 5, 10

3 100 20 1 0�02 49 Non-uniform 4 Figure 11
100 20 101 0�1 87 Non-uniform 5 Figure 12
100 20 102 0�05 149 Non-uniform 6 Figure 13
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2 norm, with each providing a method of determining quantitatively the error estimates between the
numerical and analytic solutions. Graphical displays of error profiles at various times forn � 10ÿ1

and 1072 for example 1 are presented in Figures 2 and 3, while those for example 2 are presented in
Figures 4 and 5. Although the flow domain for example 2 is infinitely extensive, we have used finite
domains,ÿ0�74 x4 1�3 for the casen � 10ÿ2 andÿ1�54 x4 2�5 for the casen � 10ÿ1, so that
the exact solutions at the end nodes satisfy the specified boundary conditions atx � ÿ1 and?
throughout the simulation times. The performance of these time discretization schemes from Figures
2 through 5 is evaluated by determining which pair of weights from the two time schemes yields the
best results. We observe that for example 1 (Figures 2 and 3), for both values of viscosity,a � 0�5
(two-level time schemes) anda � 1�5 (modified fully implicit) produced the best results. The worst
results for the same figures were produced bya � 1�0 (two-level scheme) anda � 1�25 (modified
fully implicit). Similarly, for example 2 (Figures 4 and 5) the best results were displayed bya � 0�67

Figure 2. Error plots of time discretization schemes: example 1,n � 10ÿ1

Figure 3. Error plots of time discretization schemes: example 1,n � 10ÿ2
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(two-level scheme) anda � 1�5 (modified fully implicit) and the worst results bya � 0�5 (modified
fully implicit) and a � 1�0 (two-level scheme).

Owing to the cluster of numerical results produced fora � 1�25 (fully implicit) and a � 0�5 of the
two-level scheme (Figure 5), only those of the former are represented. In the same figure also there is
an overlap of results obtained froma � 1�5 (fully implicit scheme) anda � 1�0 (two-level scheme),
with the former giving results that are marginally better. Overall it should be observed that for cases
where a pair of error profiles or appears very close (Figures 3–5), it suggests that the two weights of
different time schemes yield very close results. On the basis of the pair that yields the smallest error,
the schemes witha � 1�5 (modified fully implicit) anda � 0�7 (two-level scheme) are recommended
for approximating the temporal derivative in the Green element formulation.

Figure 4. Error plots of time discretization schemes: example 2,n � 10ÿ1

Figure 5. Error plots of time discretization schemes: example 2,n � 10ÿ2
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Because the mixed Green element approach which we have adopted in this work is based on the
same singular integral theory as the generalized BEM employed by Kakuda and Tosaka,10 we have
compared our solutions with their for example 1 at the times their solutions were tabulated. Our
values of time and spatial discretizations and maximum number of iterations allowed at each time
step are the same as theirs. Tables II–IV show both numerical solutions and exact solutions for values
of n � 1; 10ÿ1 and 1072, together with the computed error estimates. The L-2 normal errors of the
GEM are less than those of the generalized BEM formulation of Kakuda and Tosaka10 at all times
and for all Reynolds number values examined. These results show the loss of accuracy when the
differential equation is linearized within the element, which has been avoided in the mixed GEM.
Also, the simple nature of the fundamental solution employed in the mixed GEM formulation which

Figure 6. Gem solutions: example 1,n � 10ÿ2

Figure 7. Gem solutions: example 1,n � 10ÿ3
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made it possible for exact integration of the elemental integrals enhanced the accuracy of the
numerical solutions, in contrast with the more complicated fundamental solution used by Kakuda and
Tosaka10 which required the use of quadrature techniques in evaluating the elemental integrals. This
result further buttresses our earlier conclusions that a simple fundamental solution is preferable to a
more complicated one even if it involves more domain integrations.11,13–16

The GEM solutions of the velocity profiles forn � 10ÿ2
; 10ÿ3 and 1074 for example 1 are

presented at various times in Figures 6–8. These solutions compare quite favourably with the
solutions of Varoglu and Finn5 (not presented), which reflect the general behaviour of the solution in
which a sharp front develops close tox � 1 at early times and decays later as a result of viscous
action which becomes pronounced in the vicinity of large gradients of the velocity.

The exact and GEM solutions forn � 10ÿ1 and10ÿ2 for example 2 are presented in Figures 9 and
10. The sharp profile of the velocity forn � 10ÿ2 is reproduced by the GEM and it is significant to
note that the numerical solutions do not exhibit any oscillations.

Figure 8. Gem solutions: example 1,n � 10ÿ4

Figure 9. Exact and GEM solutions: example 2,n � 10ÿ1
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Figure 10. Exact and GEM solutions: example 2,n � 10ÿ2

Figure 11. GEM and FEM solutions: example 3,n � 10ÿ1

Figure 12. GEM and FEM solutions: example 3,n � 10ÿ1
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A comparison of the GEM solutions with the finite element solutions of Varoglu and Finn5 for
n � 1:10ÿ1 and 1072 for example 3 is presented in Figures 11–13. The steep velocity front of the
propagating wave is reproduced for larger values of the Reynolds number by the GEM with no
numerical dissipation and oscillation. Both numerical solutions are in good agreement.

4. CONCLUSIONS

A mixed formulation of the Green element method for the transient 1D Burgers equation has been
presented. It follows earlier GEM formulations which had been applied to two-dimensional problems.
By employing a simple kernel of the linear part of the differential equation, the singular theory of the
BEM is implemented in an exact fashion within each element and then all elemental inputs are
aggregated to form a discrete system of non-linear equations which are solved by the Newton–
Raphson algorithm. Comparison of the two-level generalized and modified fully implicit
discretization schemes shows that the scheme witha � 0�67 and the fully modified fully implicit
scheme witha � 1�5 are marginally better in approximating the temporal derivative. The GEM
solutions are superior to the generalized BEM solutions of Kakuda and Tosaka,10 because the
differential operator was not linearized in deriving the free space Green function. For the three
numerical examples solved, the GEM gave acceptable solutions for a wide range of viscosity values
using moderate sizes of time step and spatial increments. These results demonstrate one other useful
computational strength of the Green element application to non-linear problems.
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